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The stability of vertically falling viscous liquid jets issuing from a circular orifice with
a low fluid velocity where the flow is dominated by viscous effects torn down by
gravity leading to a flow dominated by inertia far downstream, is studied by means of
linear stability analysis as well as direct numerical simulation of the one-dimensional
model. Jet stability is also studied experimentally. Results for marginal stability and
critical frequencies are in excellent agreement with our theoretical predictions. A new
global instability of a viscous jet is found. This instability is observable whenever a
falling liquid jet exhibits a long enough viscosity dominated region. The source of
instability is surface tension. In contrast to the Rayleigh capillary instability that is
always present, but leads to very long disintegration lengths in highly viscous fluid
jets, the instability described here only occurs when the volume flux falls below a
certain limit depending on the fluid properties and the nozzle diameter.

1. Introduction
The stability of slender fluid jets has been studied quite extensively. First experi-

mental studies on the decay of fluid jets were done by Savart (1833) who found small
undulations growing on a jet of water by observing the jet with a simple stroboscopic
method. He moved a black belt, interrupted by narrow white stripes, parallel to the
jet. Plateau (1849) found that surface tension is responsible for jet decay. Confining
himself mostly to the study of equilibrium shapes, he showed that long-wavelength
perturbations reduce surface area and are thus favoured by surface tension. By means
of linear stability analysis, Rayleigh (1878) found growth of sinusoidal perturbations
on an infinitely long cylindrical jet was due to the competitive effects of surface ten-

sion and inertia that set the time scale t∗
b =

√
d∗3 ρ/γ of the breakup process. He found

a wavelength of maximum growth rate, λ∗
crit ≈ 4.5 d∗ (where d∗ is the diameter of the

cylinder and dimensional variables are denoted by ∗) that determines the typical size
of drops. Rayleigh (1892) also considered fluid viscosity. His work was extended by
Weber (1931) and Chandrasekhar (1961) to take into account the whole Navier–
Stokes equations, but still on cylindrical infinite jets and by means of linear stability
analysis. Comparing his theoretical growth rates to experiments on disintegration
lengths from Haenlein (1931), Weber gives an initial perturbation of ln(r∗

0/δ
∗) = 12,

where r∗
0 is the initial jet radius and δ∗ the initial amplitude of the perturbation. This

correlation was refined by Grant & Middleman (1966) and Kitamura et al. (1987).
Recent research on the decay of liquid jets still concentrates on the decay of initially
cylindrical jets with a constant velocity primary solution. At a critical Weber number
of We= γ /(ρ r∗

0 u∗
0
2) ≈ 0.32 the inviscid jet becomes locally absolutely unstable at the

orifice (Leib & Goldstein 1986a). Leib & Goldstein (1986b) also considered the local
absolute transition in a viscous liquid jet without gravity. Following the conjecture
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of Monkewitz (1990) that the transition to dripping of a fluid jet could be related
to global instability, Le Dizès (1997) performs a global linear stability analysis of a
falling capillary jet for Reynolds number Re= r∗

0 u∗
0/ν � 1 and Froude number Fr =

u∗
0/

√
g r∗

0 � 1. In an experimental study, Nonnenmacher (2003) empirically extends
Weber’s theory to take into account the gravitational effect in inertia dominated
viscous jets.

The opposite limit of the stable jet in the presence of gravity is the dripping tap.
Work on this problem started with Tate (1864) who measured drop weight and
found a proportionality to the nozzle radius. Wilson (1988) gives a one-dimensional
theory for the slow dripping of a viscous fluid, i.e. without considering inertia. For
the transition from dripping to jetting of a jet with inertia and gravity, Clanet &
Lasheras (1999) find a critical Weber number Wec = ρ V ∗

0
2
D∗2

/γ as a function of the

Bond number Bo =
√

ρ g D∗2/(2 γ ) with one parameter depending on the fluid proper-

ties valid for (ν2/g)1/3/
√

2γ /(ρ g) <Bo < π/
√

2. A historical overview on jet breakup
and drop formation can be found in the extensive review by Eggers (1997). He
comprehensively discusses the final nonlinear stages of drop separation.

Dynamics of jets with a strongly varying primary solution were first mentioned in
studies on fibre spinning. Kase, Matsuo & Yoshimoto (1966) and Pearson & Matovich
(1969) found independently that a Newtonian fibre becomes unstable to time-periodic
disturbances when a critical drawdown ratio is exceeded. This phenomenon is called
‘draw resonance’. The drawdown ratio is the ratio of take-up speed to nozzle speed.
These studies only consider fluid viscosity. Pearson & Shah (1972) extended this theory
to take into account inertia, surface tension and gravity that usually play a minor role
in fibre spinning. They found that inertia and gravity aid stability while surface tension
hinders stability. The growth of localized indentations in cross-sectional area that are
convected down the fibre is known as ‘necking’ (Petrie & Denn 1976). The neck
experiences a greater elongational tension than its surroundings and can be drawn
down to zero cross-sectional area within fluid residence time in the fibre, provided the
initial amplitude of the neck is large enough. More information on necking and fibre
spinning can be found in Larson (1992).

The stability of very viscous jets of great but finite length drawn down by gravity re-
mains unmentioned in literature on jet dynamics. Exiting slowly from a circular nozzle,
these jets are dominated by viscous forces upstream and by inertial forces down-
stream. We want to study the stability behaviour of such jets in the presence of surface
tension by means of linear stability analysis (§ 3) and stability experiments (§ 5.4).

The paper begins with a short derivation of the one-dimensional model and a brief
discussion of the stationary solution (§ 2). Then the linear stability analysis is presented,
followed by some nonlinear simulations of the basic equations in § 4. In §§ 5.1 and 5.2,
the experimental set-up and the test fluids are presented. In § 5.3, the stationary
contour is given for one representative experiment. The experimental stability results
are given in § 5.4 followed by the development of a slenderness criterion restricting the
validity of our theoretical predictions in § 5.6 and a comparison to related problems
in § 6.

2. Basic equations
2.1. The one-dimensional model

The basic one-dimensional equations for the flow of a Newtonian fluid in a slender jet
can be derived in many ways. Bechtel, Forest & Bogy (1986) and Bechtel, Lin & Forest
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Figure 1. Section of a rotationally symmetric fluid jet.

(1987) developed slender jet asymptotics to any desired order, where the leading-
order terms are the one-dimensional equations to be derived. Starting from the
Navier–Stokes equations, Eggers (1997) uses a lubrication approximation to derive
the one-dimensional equations. We want to derive these equations starting from
integral balances. In contrast to the lubrication theory this makes it easy to derive
equations for non-Newtonian fluids as no a priori assumptions have to be made
concerning the constitutive equation.

Figure 1 shows the section of the jet to be balanced. The following assumptions are
made in the one-dimensional theory:

(i) The jet is axisymmetric.
(ii) The jet is slender with slowly varying cross-sectional area.
(iii) The only relevant velocity component points in the axial direction.
(iv) The flow is purely extensional.
(v) The fluid is incompressible.

For this type of flow, the mass balance for the jet section shown in figure 1 is∫ x∗

x∗
0

∂a∗

∂t∗ dx∗ = a∗
0u

∗
0 − a∗u∗. (2.1)

The dimensional variables are denoted by ∗. a∗, u∗ and x∗ are dimensional cross-
sectional area, axial velocity and axial coordinate, respectively. Zero subscripts denote
values at the nozzle exit. Differentiation of (2.1) to x∗ gives

∂a∗

∂t∗ +
∂(a∗u∗)

∂x∗ = 0. (2.2)

The momentum balance is

D

Dt∗

∫ x∗

x∗
0

ρa∗u∗dx∗ = F ∗ + g

∫ x∗

x∗
0

ρa∗dx∗. (2.3)

For an uniaxial extensional flow, the Newtonian constitutive equation

T ∗
E = 2ηD∗ (2.4)

reduces to

τ ∗
xx − τ ∗

rr = ηD

∂u∗

∂x∗ , (2.5)

where ηD = 3η denotes the extensional viscosity. In a slender jet, the curvature in the
axial direction is negligible against the radial curvature, therefore:

−τ ∗
rr =

γ

R∗ . (2.6)
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The force F ∗(x∗, t∗) acting at a position x∗ and at a time t∗ in the axial direction on
the jet is given by

F ∗ = a∗ τ ∗
xx + 2πR∗γ (2.7)

where the last term on the right-hand side results from the ‘membrane tension’ in
the jets ‘shell’. Using the simple correlation between radius and cross-sectional area
R∗ =

√
a∗/π, we obtain

F ∗ = ηDa∗ ∂u∗

∂x∗ + γ
√

π
√

a∗. (2.8)

Incorporating this and the mass balance into (2.3), we obtain after differentiation to
x∗,

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ =
ηD

ρ

∂

(
a∗ ∂u∗

∂x∗

)
∂x∗

1

a∗ +
γ

√
π

ρ

∂
√

a∗

∂x∗
1

a∗ + g. (2.9)

The following dimensionless variables are introduced:

t =

(
ρg2

ηD

)1/3

t∗, x =

(
ρ2g

η2
D

)1/3

x∗, u =

(
ρ

ηDg

)1/3

u∗, a =

(
η2

Dg2ρ

π3/2γ 3

)2/3

a∗. (2.10)

Using these new variables, the mass and momentum balances can be written in a very
compact form:

at + (au)x = 0, (2.11)

ut + uux =
(aux)x

a
+

√
ax

a
+ 1. (2.12)

2.2. Stationary solution

For the stationary solution we want to restrict our citations to studies that include at
least viscosity, inertia and gravity. There are many excellent studies on inviscid jets
but summarising them would go beyond the scope of this study.

Clarke (1966) gives an analytical stationary solution for a semi-infinite Newtonian
jet without surface tension tending to the free-fall velocity u∗ =

√
2gx∗ far downstream.

This downstream boundary condition for semi-infinite jets was confirmed by Kaye &
Vale (1969) for Newtonian and by Joseph, Nguyen & Matta (1983) for non-Newtonian
fluids. The presence of surface tension slightly changes this stationary solution, that
is considered by Clarke (1969) with an approximate correction.

Since our stability analysis is carried out numerically, there is no need for an
approximate stationary solution and we decided to integrate the stationary equations
numerically. In the following, we want to give some insight into the stationary solution
field not presented elsewhere.

In the stationary case, (2.11) and (2.12) become

(ãũ)x = 0 (2.13)

and

ũũx = ũxx +
ãx ũx

ã
+

1

2

ãx

ã3/2
+ 1, (2.14)

where stationary quantities are denoted by a tilde. Equation (2.13) can be integrated
right away, which leads to

ãũ = q = const. (2.15)
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Figure 2. Solution field and stationary solution for q = 1000.

Incorporating this and (2.13) into (2.14) we obtain

ũũx = ũxx − ũ2
x

ũ
− 1

2

ũx√
q

√
ũ

+ 1. (2.16)

The solution field of this equation, which can of course be rewritten as a system of
two ordinary differential equations of first order, can be seen in figure 2. The solution
field diverges as ũ and x increase, therefore (2.16) has to be integrated backwards,
which means from the downstream boundary upwards. The stationary solution shows
a viscosity dominated domain for small ũ, where ũ ∼ x2 and an inertia dominated
domain for large ũ, where ũ approaches

√
2x, the free-fall velocity. In figure 2, this

behaviour can be seen through ũx ∼
√

ũ for small ũ and ũx ∼ 1/ũ for large ũ. These
are the asymptotes of Clarke’s analytical stationary solution without surface tension
(Clarke 1966). The transition from viscosity to inertia dominated flow occurs for ũ

and x of order unity. The characteristic length for the location of the transition can
be extracted from (2.10), it is (η2

D/ρ2g)1/3.
For long jets, the downstream boundary condition only affects the stationary

solution within about one dimensionless length upstream. Figure 2 displays only the
general stationary behaviour. ũx = 0 is chosen as the downstream boundary condition,
but far to the right, outside the diagram. For smaller values of q that correspond to
greater influence of surface tension, the maximum value of ũx is lower, but there is
still a viscosity dominated domain for small ũ and an inertia dominated domain for
large ũ.

3. Linearized stability analysis
3.1. Direct numerical simulation

Operating with linearized stability analysis on a stationary solution of a dynamical
system, we obtain stability criteria for infinitesimal disturbances. Whether these criteria
hold for finite disturbances or not cannot be predicted using a linearized theory.
Experiments or nonlinear analyses have to be performed to answer this question.
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Following standard procedures, a perturbation ansatz

a(x, t) = ã(x)(1 + α(x, t)), (3.1)

u(x, t) = ũ(x)(1 + β(x, t)), (3.2)

is made. Incorporating this ansatz into (2.11) and (2.12), we obtain after linearization
in α and β

βt = βxx +

(
−ũ +

ũx

ũ

)
βx +

(
ũx

2ũ
√

qũ
− ũx − 1

ũ

)
β

+

(
1

2
√

qũ
+

ũx

ũ

)
αx +

(
ũx

4
√

q ũ3/2

)
α, (3.3)

αt = −ũβx − ũαx. (3.4)

These equations are solved using the following boundary conditions:

a(0, t) = a0, u(0, t) = u0, ux(l, t) = 0. (3.5)

Herein, x = l denotes the lower end of the jet.
A finite jet has to end somewhere, impacting on a plate or on a free fluid surface.

Let the jet impact on a plate. As it approaches the plate, the acceleration of the jet
will change sign from + to −. Taking ux(l, t) = 0 implies the assumption that the
axial position at which this change of sign takes place is fixed. If the jet is very long,
this assumption is justified since it has no effect on the stability properties, as we will
see later by varying the theoretical jet length.

We have to point out, that the chosen downstream boundary condition ux(l, t) = 0 is
not realistic. In viscous liquid jets, buckling and coiling is observed under certain con-
ditions (see for instance Mahadevan, Ryu & Samuel 1998, or Tchavdarov, Yarin &
Radev 1993). In our experiments, we observe coiling at the lower end of the jet that
does not change the stability behaviour of the whole jet. Varying our experimental jet
length between 0.5 m and 2 m led to the same critical flow rates and corresponding
critical frequencies.

Applied to the stationary variables, boundary conditions (3.5) read

ã(0) = a0, ũ(0) = u0, ũx(l) = 0. (3.6)

For the perturbation variables we obtain

β(0, t) = 0, βx(l, t) = 0. (3.7)

We introduce an initial perturbation through

α(0, t) =


δ

(
1 − cos2

(
π

t

t1

))
, 0 � t � t1,

0, t > t1,

(3.8)

where δ is an arbitrary initial amplitude (we are dealing with homogenous linear
equations) and t1 is a short time. t1 is chosen 0.001 times the fluid residence time in

the stationary jet tres =
∫ l

0
1/ũ dx.

The initial conditions are:

α(x, 0) = 0, β(x, 0) = 0. (3.9)

A numerical method using an implicit Euler scheme for the second derivative and an
explicit upwind scheme for the conservative part is used to solve the equations. Points



Stability of viscous jets driven by gravity 243

of marginal stability are sought by applying a Newton’s-method with relaxation on the
growth rate of the perturbation variables. Exponential growth, or decay, respectively,
is expected and observed. These calculations are extremely tedious, even on state-
of-the-art computers, because fine discretization is necessary in order to produce
accurate results.

3.2. Separation ansatz

Therefore another method is used to calculate more points of marginal stability.
Chronologically this method was tried first, but without very good initial values it
was impossible to find a solution.

We perform the following transformation that results in a strong stretching of the
downstream coordinate for small x.

τ = τ0 +

∫ x

x0

dx

ũ
, (3.10)

τ is a Lagrangian-coordinate in the stationary case. Operating on (2.16), we obtain

ũττ = ũ2ũτ + 2
ũ2

τ

ũ
−

√
ũũτ

2
√

q
− ũ2. (3.11)

Transformation (3.10) is applied to (3.3) and (3.4) and periodic solutions of
exponential growth in time are sought. This is done by a separation ansatz:

α(τ, t) = eλt (α1(τ ) sin(ωt) + α2(τ ) cos(ωt)), (3.12)

β(τ, t) = eλt (β1(τ ) sin(ωt) + β2(τ ) cos(ωt)). (3.13)

Introducing

ϕ1(τ ) =
dβ1(τ )

dτ
, (3.14)

ϕ2(τ ) =
dβ2(τ )

dτ
, (3.15)

we obtain a system of first-order ordinary differential equations for the amplitude
functions α1, α2, β1, β2, ϕ1 and ϕ2:

α1τ = −ϕ1 − (λα1 − ωα2), (3.16)

α2τ = −ϕ2 − (λα2 + ωα1), (3.17)

β1τ = ϕ1, (3.18)

β2τ = ϕ2, (3.19)

ϕ1τ =

((
1

2

√
ũ

q
+

ũτ

ũ

)
λ − ũτ

4
√

qũ

)
α1 −

(
1

2

√
ũ

q
+

ũτ

ũ

)
ωα2

+

(
λũ2 + ũ + ũũτ − ũτ

2
√

qũ

)
β1 − ωũ2β2 +

(
ũ2 +

1

2

√
ũ

q
+

ũτ

ũ

)
ϕ1, (3.20)

ϕ2τ =

((
1

2

√
ũ

q
+

ũτ

ũ

)
λ − ũτ

4
√

qũ

)
α2 +

(
1

2

√
ũ

q
+

ũτ

ũ

)
ωα1

+

(
λũ2 + ũ + ũũτ − ũτ

2
√

qũ

)
β2 + ωũ2β1 +

(
ũ2 +

1

2

√
ũ

q
+

ũτ

ũ

)
ϕ2. (3.21)
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Equation (3.11) is rewritten in terms of two first-order equations and the parameters
q , ω, λ and falling distance x are introduced as differential equations.

ũτ = ṽ, (3.22)

ṽτ = ũ2ṽ + 2
ṽ2

ũ
−

√
ũṽ

2
√

q
− ũ2, (3.23)

xτ = ũ, (3.24)

qτ = 0, (3.25)

ωτ = 0, (3.26)

λτ = 0. (3.27)

Together with (3.17) to (3.21), we obtain a system of 12 ordinary differential equations
to be solved simultaneously. Points of marginal stability are obtained for λ=0. The
boundary conditions are

ũ(τ = 0) = u0, ṽ(τ = T ) = 0,

x(τ = 0) = 0, α1(τ = 0) = 0,

α2(τ = 0) = 0, β1(τ = 0) = 0,

β2(τ = 0) = 0, ϕ1(τ = T ) = 0,

ϕ2(τ = T ) = 0, λ(τ = T ) = 0,




(3.28)

where τ = T denotes the lower end of the jet. The differential equations (3.17) to (3.21)
are homogeneous, first-order and linear in α1, α2, β1, β2, ϕ1 and ϕ2, therefore arbitrary
multiples of these functions are solutions to (3.17) to (3.21). This implies that one of
the function values and one phase at a position τ can be chosen arbitrarily, e.g.

α1(τ = T ) = 1, (3.29)

α2(τ = T ) = 0. (3.30)

The equations are solved using a multiple shooting scheme according to Stoer &
Bulirsch (1978) using a Runge–Kutta–Fehlberg method as integrator. Initial data is
taken from the numerical simulation of the partial differential equations described
above.

For long jets there is only one free parameter on the line of marginal stability: either
u0 or q or ω can be fixed, the remaining parameters are obtained from the solution
of the differential equations. After one point of marginal stability is found, others
are sought by taking the current solution as initial values and slightly varying one
of the parameters (e.g. u0). Following this procedure, we obtain a stability, diagram
as shown in figure 3. For each calculated point on the line of marginal stability, the
dimensionless jet length is doubled until the relative change in the critical parameters
falls below a given limit (typically 10−3). This was already often reached when
doubling the dimensionless length from 10 to 20.

The fit function,

a0,crit (u0) = 0.025u−2.51
0 , (3.31)

given in figure 3 approximates the calculated line of marginal stability reasonably
well and should be useful for engineering purposes.

We have found a line of marginal stability for the temporal instability of a long
but finite liquid jet with viscosity, inertia, surface tension and gravity. The jet shows
time-periodic diameter oscillations when for a given nozzle radius and given fluid
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Figure 3. Line of marginal stability and corresponding critical angular frequency for a
Newtonian fluid. —, linearized stability analysis; - - -, approximative fit.

properties, e.g. given a0, the outflow velocity, or volume flux, respectively, falls below
a certain limit. The oscillation shows a well-defined angular frequency.

The amplitude
√

α2
1 + α2

2 of the marginally stable oscillation rises with growing
fluid residence time. The growth is less pronounced for large values of q that cor-
respond to low influence of surface tension. This growing amplitude can lead to jet
breakup somewhere far downstream that can be interpreted as a connection to the
Rayleigh capillary instability. In our analysis the initial amplitude is zero, therefore
the calculation of breakup lengths from an initial disturbance is not possible with
our ansatz and is not the aim of this paper. Our finite jet length prevents the infinite
growth of instabilities that grow with fluid residence time. The case of vanishing
viscosity cannot be captured by our analysis because fluid viscosity is used for
our non-dimensionalization. Moreover, for any finite non-dimensional jet length, the
dimensional jet length tends to zero for vanishing viscosity.
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Figure 4. (a(2.5, t) − ã(2.5))/(ã(2.5)) for an unstable set of parameters: u0 = 0.1, l = 10.0,
q = 0.7. At t = 1000, a disturbance is introduced at the outflow.

4. Simulation of the nonlinear equations
There exist many nonlinear studies on liquid jets (Eggers 1997), but they are mostly

concerned with the breakup of jets. We are not aware of nonlinear studies on long
viscous gravity-driven jets.

In order to check whether our results obtained by linear stability analysis hold in
the nonlinear regime (2.11) and (2.12) are integrated numerically. For this purpose, a
combined implicit/explicit finite-difference scheme is used. The first-order derivatives
are integrated using an explicit upwind method and the viscous terms are integrated
via an implicit Euler scheme.

The jet length is chosen as l =10, because at greater length there is no change in
stability behaviour for the upper part of the jet. Oscillation frequencies and amplitudes
remain the same at x < 5 for jets of length 20 and 50. A length of 10 is sufficiently long
for no backlash of the downstream boundary to affect the jet behaviour upstream. The
amplitude of the oscillation rises with axial position possibly leading to jet breakup
somewhere downstream. This is not analysed systematically.

Figure 4 shows the relative deviation of the jet cross-section from the stationary
solution as a function of time for an unstable set of parameters. The initial amplitude
results from the accuracy difference of the stationary solution calculated with a
Runge–Kutta–Fehlberg solver and the transient solver. This accuracy difference acts
as a small δ-pulse at every vertical position in the jet. The amplitude reaches an
upper limit at large time values for initial amplitudes below or above this limit.
This is called a limit cycle. At t = 1000, a disturbance is introduced by increasing the
initial jet cross-sectional area by 1 % for �t =10. The oscillation amplitude exceeds
the limit cycle value for a short time and returns to the limit cycle. Fourteen stages
of one period in the limit cycle can be seen in figure 5 for the whole jet. The vertical
axis is contracted strongly (by a factor of several hundred for a highly viscous fluid).
Thick regions are shorter than thin regions. In figure 6, the relative deviation from
the stationary solution in a and u is given for the whole jet at seven stages of one
period in the limit cycle (every other in figure 5). The amplitude of the oscillation
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Figure 5. Stages of one period in the limit cycle of figure 4. - - -, stationary solution.

in the cross-sectional area rises with axial position possibly leading to breakup for
longer jets. The wavelength also rises with axial position as the jet becomes more
and more stretched. The amplitude of the oscillation of the relative deviation from
the stationary solution in axial velocity rises initially and then almost stagnates. The
amplitude of the absolute deviation from the stationary solution in axial velocity still
rises, however, since the axial velocity rises.

For a stable set of parameters slightly above the line of marginal stability (e.g.
u0 = 0.1, l = 10.0, q =0.77) the initial amplitude is about the same as for the unstable
set of parameters shown in figure 4, but decays rapidly. Similar simulations were
carried out slightly above and slightly below the line of marginal stability for
several randomly selected u0 in the range of 0.01 <u0 < 0.1. No subcritical bifurcating
solutions being unstable in the linearly stable regime could be found. In the linearly
unstable regime, limit cycles are found in the neighbourhood of the line of marginal
stability, suggesting a Hopf-type supercritical bifurcation. Further in the linearly un-
stable regime, the cross-sectional area reaches zero at some point and numerics breaks
down. Simulations for u0 < 0.01 are tedious, because of the time-step limiting CFL-
condition and the required fine axial discretization and therefore were not carried out.

Further in the stable regime, no time periodic oscillations are observed. When a
square pulse in the cross-sectional area is introduced at the nozzle, a compact wave
package travels through the jet with rising amplitude. This is a convective instability
that corresponds to a temporal growth in the comoving frame of reference. It seems to
be connected to the Rayleigh capillary instability. The wavelength of this perturbation
is much shorter than the wavelengths occurring in our instability. If the jet is very
long (e.g. l � 100) or the initial amplitude is very large, jet breakup occurs in our
simulations, and numerics breaks down. To obtain meaningful disintegration lengths
from the simulations, it would be necessary to include the axial curvature into the
surface-tension term of the one-dimensional theory that becomes relevant at large
amplitudes and short wavelengths. This is not considered in our study.

The Rayleigh capillary instability is present in any liquid jet. High viscosity and
gravity reduce its growth rate, which leads to very large disintegration lengths
of 100 m or more in highly viscous jets subject to ubiquitous small fluctuations
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Figure 6. Relative deviation from the stationary solution (a(x, t) − ã(x))/(ã(x)) and (u(x, t) −
ũ(x))/(ũ(x)) at seven equally spaced times of one period in the limit cycle of figure 4: u0 = 0.1,
l = 10.0, q = 0.7.

(Nonnenmacher 2003). Therefore, the Rayleigh capillary instability will only be
observed in highly viscous jets, if the jet is subject to forced oscillations.

In our experiments, we observed jet breakup within our falling distance of 2 m for
the fluid of lowest viscosity (AK1000) at low flow rates in our linearly stable and
unstable regimes. By repeating the experiments at a jet length of 0.5 m, where no jet
breakup occurred, we found that this breakup at the lower end of the jet does not
affect our instability. The Rayleigh capillary instability and the global instability we
found seem to occur independently of each other.

5. Experiments
5.1. Experimental set-up

The experimental apparatus (figure 7) consists of two independent units, the fluid
cycle and the optical system. In the fluid cycle, the test fluid is stored in a reservoir.
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Figure 7. Sketch of the experimental setup. 1, reservoir; 2, gear pump; 3, pressure relief
valve with bypass; 4, filter; 5, equalizing tank; 6, valve; 7, exchangeable nozzle; 8, fluid jet;
9, evacuated glass tube; 10, slide with x, y-table; 11, linear guides; 12, absolute length encoder;
13, CCD-camera; 14, back lighting; 15, computer with frame grabber. TC, temperature control;
PC, pressure control.

This reservoir feeds an adjustable gear pump suited for low flow rates as it is usually
used in laboratory scale spinline experiments. Gear pumps of this type have a low
pulsation that is damped away in the flexible tube and the equalizing tank upstream
of the nozzle. For safety reasons, a series connection of a pressure relief valve with
bypass and a filter is set between the flexible tube and the equalizing tank. Impurities
of, for example, sealing compound could close the nozzle, leading to the maximum
pressure of the pump in the apparatus that is about 300 bars. That would damage the
pressure and temperature transducers and possibly the whole apparatus. The nozzle
exit leads the fluid jet into an evacuated vertical glass tube with a height of 2 m, where
the jet is stretched by gravitational forces with negligible influence of air friction and
air movement. The shear stress acting on the jet owing to air friction can be estimated
using an empirical correlation set up in the context of fibre spinning by Kase &
Matsuo (1967). Comparison with other active forces, namely the gravitational force,
gives the necessary level of evacuation. During the experiments, we found out that
the level of evacuation has only a little influence on the experimental results, the
lower faster end of the jet where air friction is relevant having virtually no reaction
to the upper slower part of the jet defining the stability properties. A hole in the
bottom of the glass tube lets the jet fall into the reservoir. The brass nozzles have
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Test fluid η (Pa s) ρ (kg m−3) γ (Nm−1)

AK1000 1.39 976 0.020
AK5000 5.32 963 0.020
AK10000 10.7 963 0.020
AK50000 58.5 963 0.021

Table 1. Shear viscosity, density and surface tension of the test fluids at 21◦C.

a long conical contraction zone leading smoothly into a cylindrical tube that is five
nozzle exit diameters long with a sharp edge at the exit. The sharp edge has an outer
cone with an opening angle of 30◦ to 45◦ to the vertical axis. If the opening is flat,
the test fluid creeps horizontally outward from the nozzle exit, leading to a greater
and undefined effective nozzle diameter. The sharp edge prevents this phenomenon
showing the desired well-defined outflow conditions. Nozzles of the diameters 0.51,
1.02, 1.51, 1.55, 2.10, 2.55, 3.12 and 4.06 mm are used for the experiments. The
smallest three nozzle openings are manufactured by spark erosion, the others are
drilled.

The optical system consists of a CCD-camera with strongly magnifying macro zoom
optics (at maximum magnification 0.82 µm per pixel) and backlighting mounted to-
gether on an x, y-table. The x, y-table is mounted on a slide and is vertically adjustable
on linear guides. An absolute length encoder gives the current vertical position. The
digital images are captured by a frame grabber and analysed on a computer. From
the grey-scale digital images, the jet diameter information can be extracted by use of
a steepest grey-scale gradient method. The jet diameter can be determined within an
uncertainty of about one pixel at a total diameter of several hundred pixels.

5.2. Test fluids

The test fluid is linear silicone oil of different viscosity levels, exhibiting constant
shear viscosity in a rotational rheometer for shear rates between 0.1 s−1 and 100 s−1.
Rheometer data can be found in table 1. The maximum dimensionless extensional
rate in a gravity-driven jet is approximately 0.62, giving actual maximum strain rates
of 8 s−1 (AK50000) to 17 s−1 (AK1000). For low enough shear and extensional rates,
these silicone oils can be considered as Newtonian fluids. Fluid density was determined
using a method based on Archimedes’ principle. Surface tension was measured using
the Wilhelmy Plate method.

All experiments are carried out in a temperature range of 20 ◦C–22 ◦C. The fluid
temperature in the equalizing tank is recorded. The glass transition temperature Tg

and the coefficient of thermal expansion αl of a polymeric liquid show approximately
an empirical correlation αl Tg ≈ 0.16 (Boyer & Spencer 1944). The glass transition
temperature of silicone oil is approximately 150 K (van Krevelen 1990). Therefore,
silicone oil density decreases 0.1 % per K, which is negligible under the experimental
conditions. Guggenheim (1945) found a relationship for the temperature dependence
of the interfacial tension γ (T ) = γ0(1−T/Tk)

(11/9). Together with data from Wu (1982)
for γ0 = 0.0353 Nm−1 and Tk =776 K, we can estimate the relative change in γ per K,
which turns out to be about −0.25 % K−1 at 21 ◦C. This is greater than the density
change, but still negligible. Van Krevelen (1990) gives log(η(T )/η(1.2Tg)) = A(T/Tg−1)
with Tg = 150 K and A= 5.2 for silicone oil. The relative change in viscosity per K is
therefore −2.1 % K−1 at 21 ◦C. This is not negligible and has to be compensated.
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Figure 8. Stationary jet. AK10000, d∗ =3.12mm, V̇ ∗ = 8.06 × 10−8 m3 s−1. (c) Composite
image of several camera images showing the upper 51 mm of the jet. (a) ×, experiment; —,
theory; - - -, acceleration. (b) - - -, strain rate; . . . , velocity.

5.3. Stationary experiments

Figure 8 shows a typical stationary jet contour near the line of marginal stability.
This stationary experiment demonstrates the capabilities of our optical measurement
system and shows the different flow regimes. Experimental jet radii and numerical
computations using (2.13) and (2.14) are in excellent agreement. Jet acceleration, strain
rate and velocity are obtained using the same equations. Similar experiments were
carried out for AK1000 (d∗ = 2.10 mm, V̇ =6.93 × 10−8 m3 s−1), AK5000 (d∗ =
2.10 mm, V̇ = 5.64 × 10−8 m3 s−1) and AK50000 (d∗ = 3.12 mm, V̇ =6.04 × 10−8 m3 s−1)
with similarly good agreement to the theory. Using our non-dimensionalization, all
these stationary solutions differ only slightly. For values of the non-dimensional
volume flux q � 1, q has very little influence on the jet shape. This is the case here.

For a creeping Newtonian jet, Dutta & Ryan (1982) found, that ‘the exit region,
within which flow rearrangement occurs from Poiseuille to uniform plug flow, extends
approximately from z = −1 to z =1.5’, where z = 2 x∗/d∗. Therefore, theory and
experiment show slight deviations in the direct neighbourhood of the nozzle.

It is not our aim to perform a comprehensive experimental study on the stationary
jet shape. This is done elsewhere. Adachi et al. (1990) try to find a simple approximative
function describing the jet shape over a wide range of outflow conditions fitting their
experimental data. They do not compare to a numerical integration of the stationary
equations.

The jet in figure 8 exits the nozzle at low velocity, low acceleration and moderate
strain rate. The strain rate rises almost linearly with x∗, denoting the viscosity
dominated region. The jet velocity rises quadratically with x∗. After a maximum strain
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Figure 9. (a) Oscillation of a jet. The separate curves represent different vertical positions.
AK5000, d∗ = 2.55 mm, V̇ ∗ = 6.75 × 10−8 m3 s−1. (b) Corresponding Fourier transform.

rate at the transition from viscosity dominated to inertia dominated flow, the strain
rate falls, tending to zero far downstream as velocity approaches u∗

∞ =
√

2gx∗. Jet
acceleration rises monotonically approaching the free-fall limit of g =9.81 m s−2.

Figure 8(c) is a composite camera image showing the upper 51 mm of the jet.
This illustrates what we think of when speaking of a slender jet and should not be
confused with the strongly compressed diagram to the left. A light strip in the centre
of the images results from the transmitted light of the back lighting.

5.4. Experimental stability analysis

Jet stability is studied as follows. Beginning with a stable stationary jet, flow rate is
lowered slowly, until the whole jet up to the nozzle begins to oscillate. At any vertical
position of the jet, the jet diameter oscillates periodically. This state is considered as
unstable. Then the flow rate is increased again until the oscillation terminates, then
lowered again and so forth. Following this procedure, the ‘point’ of marginal stability
can be found within one step of the converter that controls the motor of the gear
pump. In particular, the test fluids of highest viscosity showed very low growth rates
and decay rates of perturbations in the proximity of the ‘point’ of marginal stability.
Therefore one has to wait for a very long time (about half an hour for the test fluids
of highest viscosity) until oscillations have ceased when coming from the unstable side
and exceeding the ‘point’ of marginal stability by one converter step that is about 1 %
to 2 % of the total volume flux. Coming from the stable side, the same picture is found.
Within the range of one frequency converter step no hysteresis phenomenon could
be found. One frequency converter step below the ‘point’ of marginal stability, the
frequency of the oscillation is determined. A series of pictures is taken with the CCD
camera. For each picture the jet diameter is identified at several vertical positions.
An example of the result of this approach can be seen in figure 9 together with the
corresponding discrete Fourier transform. The most unstable angular frequency, the
so-called critical frequency ω∗

crit , can be calculated from the peak of this diagram by
ω∗

crit = 2π f ∗. The distance between the vertical positions corresponding to the upper
and the lower curve in figure 9(a) is 3.5 mm, the average local wave velocity is about
48 mm s−1. Therefore the dilatations and contractions seem to occur almost at the
same time at all vertical positions of this image section.

The measured points of marginal stability and the corresponding critical frequencies
are given in figures 10 and 11. Theoretical predictions and experimental results are in
good agreement. The strong deviations in marginal stability for the points of lowest
nozzle exit velocity u0 for AK1000, AK5000 and AK10000 are due to a violation



Stability of viscous jets driven by gravity 253

10–1

100

101

102

103

104

105

106

10–3 10–2 10–1

a0,crit

u0

Stable

Unstable

Theory
AK1000
AK5000
AK10000
AK50000
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Figure 11. Theoretically predicted critical frequencies with experimental results.

of the slenderness assumption near the nozzle. This leads to enhanced stability that
cannot be explained by the leading-order one-dimensional approximation used in the
theoretical study.

5.5. Slenderness criterion

By introducing a new dimensionless parameter and further exploiting the one-
dimensional theory, we can find a qualitative criterion for slenderness in the sense of
our theory, which can be made a quantitative criterion using our experimental results.
Obviously, the variation of the jet diameter d∗ with axial position x∗ is a good measure
for slenderness at the orifice (we keep in mind that on the first one or two diameters
distance from the orifice, the assumption of purely extensional flow does not hold, but



254 U. S. Sauter and H. W. Buggisch

10–2

10–1

100

101(a) (b)

10–3 10–2 10–1

|∂
d*

/∂
x*

| x 
=

 0

u0

Slender
Non-slender

10–1

100

101

102

103

104

105

106

10–3 10–2 10–1

a0,crit

u0

Stable

Unstable

Theory
Slender
Non-slender
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|∂d∗/∂x∗|0 = 0.6 show strong deviations from the theoretical line of marginal stability in (b).

that should not worry us too much). Incorporating our non-dimensionalization into

d∗ =

√
4

π
a∗, (5.1)

we obtain

d∗ = 2
√

a

(
γ 3

η2
Dg2ρ

)1/3

. (5.2)

Differentiation with respect to x∗ gives us a new dimensionless variable

∂d∗

∂x∗ := 2
∂

√
a

∂x

(
γ 3ρ

η4
Dg

)1/3

. (5.3)

In the viscosity dominated flow regime,

u = 1
2
(x +

√
2u0)

2 (5.4)

gives a good approximation for the axial velocity if u < 0.2 and q � 1. Evaluating
(5.3) at x = 0 using this approximation gives us∣∣∣∣∂d∗

∂x∗

∣∣∣∣
0

=

√
2a0

u0

(
γ 3ρ

η4
Dg

)1/3

. (5.5)

In figure 12(a), |∂d∗/∂x∗|0 is plotted against u0. Comparison with figure 12(b) gives
us an approximate criterion for slenderness in the sense of our stability theory,∣∣∣∣∂d∗

∂x∗

∣∣∣∣
0

< 0.6. (5.6)

The failure of the slenderness assumption can be seen in the shape of the filament.
The value of |∂d∗/∂x∗|0 = 0.6 gives a critical angle to the vertical axis of ≈ 17◦. The
experimentally observed angles that can be extracted from digital images of the jet
at the nozzle exit are smaller than the theoretically predicted angles. Quantitative
agreement is not expected since flow rearrangement from shear flow to extensional
flow takes place at the nozzle exit (x = 0).

6. Comparison to related problems
As mentioned in § 1, Le Dizès (1997) carried out a global linear stability

analysis in falling capillary jets in the limit of high Reynolds numbers. His critical
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Figure 13. Our theory (· · ·) and experiments (+) omitting the points violating our slenderness
criterion. Extrapolation of our theory (– · – ). Le Dizès (1997): global transition for a jet
of water at high Reynolds numbers (———). Leib & Goldstein (1986a): transition to local
absolute instability at the orifice for a non-viscous capillary jet (– – –). Leib & Goldstein
(1986b): absolute instability of a viscous liquid jet of water without gravity (- - -). Clanet &
Lasheras (2003): transition from dripping to jetting for a vertical falling jet of water (�).

parameters can be expressed in terms of our critical parameters: u0 = (Re/(3 ε))1/3

and a0,crit = We−2(Re/(3 ε))−4/3, where the Reynolds and Weber numbers are defined
as in § 1 and the slenderness parameter ε = Fr−2 is connected to the Froude number.
Le Dizès performed an example calculation for high Reynolds numbers using the
physical parameters of water. The curve shown in figure 13 is read off his diagrams
and represents the validity range of his theory. A straight line with a slope of −4
in the log–log diagram represents the value We= 0.32 for the transition to local
absolute instability at the orifice in the non-viscous limit found by Leib & Goldstein
(1986a). Leib & Goldstein (1986b) give the transition to absolute instability for a
viscous liquid jet without gravity. Our dimensionless parameters expressed in terms
of their critical Rayleigh and Weber numbers read: u0 = 6 We/Re(ργ 3/η4

Dg)1/3 and
a0,crit =Re4/We2(ργ 3/η4

Dg)−4/3/1296. The curve given in figure 13 is read from their
stability diagram and represents the range of their calculated values. In figure 13, we
can see the difference between the high Reynolds number and inviscid global stability
results obtained from local considerations and our global stability analysis for a very
viscous fluid jet under gravity.

Clanet & Lasheras (1999) study the transition from dripping to jetting for an inertia
dominated flow. The dimensionless parameters and the validity range of their theory
are given in § 1. They carry out experiments using hypodermic needles as nozzles
with a thick-walled completely wetted nozzle exit and deionized water as test fluid.
Because of the finite wall thickness at the nozzle exit, it is difficult to introduce their
experimental findings into our diagram, but we still want to do so. From the given
Reynolds (Re = V0 D/ν, with V0 as the area averaged outflow velocity and D as
the inner diameter of the nozzle) and Weber numbers, we calculate our parameters
through u0 = 3We/Re (ργ 3/(η4

Dg))1/3 and a0,crit = Re4/(We2(18 (ργ 3/(η4
Dg))2/3)2). We

somewhat arbitrarily choose the inner diameter to build the Bond number (Weber
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and Reynolds numbers always use the inner diameter). The result of this procedure
can be seen in figure 13. It is remarkable, that the experimental values of Clanet &
Lasheras are very close to an extrapolation of our theory, although being taken in a
completely different parameter range and describing the transition from dripping to
jetting rather than the instability of a long jet.

7. Conclusion
Linear stability analysis was applied to the leading-order one-dimensional theory

of a vertical liquid Newtonian jet with inertia and surface tension present torn
down by gravity and exhibiting a sufficiently long viscosity-dominated zone near
the orifice. A line of marginal stability as well as the corresponding most unstable
frequencies are obtained. These describe a global instability that occurs when, for
a given dimensionless nozzle cross-section, the dimensionless outflow velocity falls
below a limit given by the line of marginal stability.

An experimental study was carried out to support the theoretical findings. Theo-
retical and experimental results are in excellent agreement. The line of marginal
stability as well as the most unstable frequencies could be confirmed with a standard
deviation of less than 15 % omitting the experimental values violating our semi-
empirical slenderness criterion (equation (5.6)). An approximative function (equation
(3.31)) for the line of marginal stability is given.

Nonlinear simulations are carried out in the neighbourhood of the line of marginal
stability, showing limit cycles in the unstable regime and a strongly decreasing distur-
bance amplitude in the stable regime. Performing random sampling with nonlinear
simulations, no subcritical bifurcating solutions (being unstable in the linearly stable
regime) could be found.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG). Thanks
are due to Professor P. Rentrop for providing a solver for the multiple shooting
Runge–Kutta–Fehlberg method.
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